Non-Euclidean statistics for covariance matrices, with applications to diffusion tensor imaging

نویسندگان

  • Ian L. Dryden
  • Alexey Koloydenko
  • Diwei Zhou
چکیده

The statistical analysis of covariance matrix data is considered, and in particular methodology is discussed which takes into account the non-Euclidean nature of the space of positive semi-definite symmetric matrices. The main motivation for the work is the analysis of diffusion tensors in medical image analysis. The primary focus is on estimation of a mean covariance matrix, and in particular on the use of Procrustes size-and-shape space. Comparisons are made with other estimation techniques, including using the matrix logarithm, matrix square root and Cholesky decomposition. Applications to diffusion tensor imaging are considered, and in particular a new measure of fractional anisotropy called Procrustes Anisotropy is discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-euclidean Statistics for Covariance Matrices, with Applications to Diffusion Tensor Imaging1 by Ian

The statistical analysis of covariance matrix data is considered and, in particular, methodology is discussed which takes into account the nonEuclidean nature of the space of positive semi-definite symmetric matrices. The main motivation for the work is the analysis of diffusion tensors in medical image analysis. The primary focus is on estimation of a mean covariance matrix and, in particular,...

متن کامل

Local Log-Euclidean Covariance Matrix (L2ECM) for Image Representation and Its Applications

This paper presents Local Log-Euclidean Covariance Matrix (LECM) to represent neighboring image properties by capturing correlation of various image cues. Our work is inspired by the structure tensor which computes the second-order moment of image gradients for representing local image properties, and the Diffusion Tensor Imaging which produces tensor-valued image characterizing the local tissu...

متن کامل

Assessment of the Log-Euclidean Metric Performance in Diffusion Tensor Image Segmentation

Introduction: Appropriate definition of the distance measure between diffusion tensors has a deep impact on Diffusion Tensor Image (DTI) segmentation results. The geodesic metric is the best distance measure since it yields high-quality segmentation results. However, the important problem with the geodesic metric is a high computational cost of the algorithms based on it. The main goal of this ...

متن کامل

Procrustes Analysis of Diffusion Tensor Data

Introduction: Diffusion tensor imaging (DTI) is becoming increasingly important in clinical studies of diseases such as multiple sclerosis and schizophrenia, and also in investigating brain connectivity. Hence, there is a growing need to process diffusion tensor (DT) images within a statistical framework based on appropriate mathematical metrics. However, the usual Euclidean operations are ofte...

متن کامل

Inference for Eigenvalues and Eigenvectors of Gaussian Symmetric Matrices

This article presents maximum likelihood estimators (MLEs) and log-likelihood ratio (LLR) tests for the eigenvalues and eigenvectors of Gaussian random symmetric matrices of arbitrary dimension, where the observations are independent repeated samples from one or two populations. These inference problems are relevant in the analysis of diffusion tensor imaging data and polarized cosmic backgroun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009